Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62.990
1.
Mikrochim Acta ; 191(5): 294, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698253

Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.


Ampicillin , Electrochemical Techniques , Fumonisins , Gold , Limit of Detection , Metal Nanoparticles , Titanium , Fumonisins/analysis , Gold/chemistry , Ampicillin/analysis , Ampicillin/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Titanium/chemistry , Biosensing Techniques/methods , Milk/chemistry , Anti-Bacterial Agents/analysis , Electrodes , Food Contamination/analysis , Animals
2.
Immun Inflamm Dis ; 12(5): e1265, 2024 May.
Article En | MEDLINE | ID: mdl-38722265

BACKGROUND: The basophil activation test is an emerging clinical tool in the diagnosis of cow's milk allergy (CMA). The aim was to assess the association between the basophil allergen threshold sensitivity to the major milk protein casein (casein-specific CD-sens), the levels of milk- and casein-specific Immunoglobulin E antibodies (IgE-ab), and the severity of allergic reactions at milk challenges. METHODS: We enrolled 34 patients aged 5-15 (median 9) years who underwent a double-blind placebo-controlled milk-challenge (DBPCMC) as screening before inclusion in an oral immunotherapy study for CMA. The severity of the allergic reaction at the DBPCMC was graded using Sampson's severity score. Venous blood was drawn before the DBPCMC. Milk- and casein-specific IgE-ab were analyzed. Following in vitro stimulation of basophils with casein, casein-specific CD-sens, was determined. RESULTS: Thirty-three patients completed the DBPCMC. There were strong correlations between casein-specific CD-sens and IgE-ab to milk (rs = 0.682, p < .001), and between casein-specific CD-sens and IgE-ab to casein (rs = 0.823, p < .001). There was a correlation between the severity of the allergic reaction and casein-specific CD-sens level (rs = 0.395, p = .041) and an inverse correlation between casein-specific CD-sens level and the cumulative dose of milk protein to which the patient reacted at the DBPCMC (rs = -0.418, p = .027). Among the 30 patients with an allergic reaction at the DBPCMC, 67% had positive casein-specific CD-sens, 23% had negative casein-specific CD-sens, and 10% were declared non-responders. CONCLUSION: Two thirds of those reacting at the DBPMC had positive casein-specific CD-sens, but reactions also occurred despite negative casein-specific CD-sens. The association between casein-specific CD-sens and the severity of the allergic reaction and cumulative dose of milk protein, respectively, was moderate.


Allergens , Basophils , Caseins , Immunoglobulin E , Milk Hypersensitivity , Humans , Basophils/immunology , Basophils/metabolism , Caseins/immunology , Milk Hypersensitivity/immunology , Milk Hypersensitivity/diagnosis , Milk Hypersensitivity/blood , Immunoglobulin E/immunology , Immunoglobulin E/blood , Female , Male , Child , Adolescent , Child, Preschool , Allergens/immunology , Animals , Milk/immunology , Milk/adverse effects , Double-Blind Method
3.
Nat Commun ; 15(1): 3953, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729967

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Lactation , Mammary Glands, Animal , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Humans , Mice , Milk/metabolism , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Epithelial Cells/metabolism , Macropodidae/metabolism , Mammals , Marsupialia
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731976

Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat AMR and to develop new therapies. EVs were characterised and tested using various methods. Co-culture experiments with S. aureus showed significant growth inhibition, with colony-forming units decreasing from 2.4 × 105 CFU/mL (single dose) to 7.4 × 104 CFU/mL (triple doses) after 12 h. Milk EVs extended lag time (6 to 9 h) and increased generation time (2.8 to 4.8 h) dose-dependently, compared to controls. In conclusion, milk EVs exhibit dose-dependent inhibition against S. aureus, prolonging lag and generation times. Despite limitations, this suggests their potential in addressing AMR.


Extracellular Vesicles , Milk , Staphylococcus aureus , Extracellular Vesicles/metabolism , Animals , Milk/microbiology , Staphylococcus aureus/drug effects , Cattle , Anti-Bacterial Agents/pharmacology , Pasteurization , Microbial Sensitivity Tests
5.
Food Res Int ; 186: 114305, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729687

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Equidae , Fermentation , Goats , Kefir , Milk , Animals , Kefir/microbiology , Cattle , Milk/microbiology , Milk/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Camelus , Food Microbiology , Lactobacillus/metabolism , Microbiota , Acetobacter/metabolism , Amino Acids/metabolism , Amino Acids/analysis
6.
Food Res Int ; 186: 114336, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729713

Alternative milk products such as A2 milk are gaining popular stand within consumer market, for their healthy profile and expected greater digestibility characteristics. However, total mineral content and its bioaccessible profile have lacked in studies through the years, even more because of their relevance in public health. The present study aimed to evaluate the mineral profile of commercial A2 bovine milk (AT) and estimate the bioaccessibility of calcium, phosphorus and magnesium using the INFOGEST protocol. Non-A2 samples (NAT) were evaluated for comparison purpose. The determination of Ca, Mg, Na and K was performed by FAAS and total P was quantified by colorimetric method. Total protein content was determined by Kjeldahl method. Free amino acids were quantified by OPA method along the in vitro digestion stages. Total content of Ca, Na and P exhibited equivalent results between samples, although A2 milk showed elevated levels of total Mg and K in the analyzed batches. AT showed protein content equivalent to NAT. In addition, levels of free NH2 were observed 2 times higher in AT, during the first hour of pancreatic phase in the intestinal digestion. Bioaccessibility of Ca showed equivalent percentages for AT (12-42 %) and NAT (10-39 %). The observed low values were possibly derived from interferences with saturated fatty acids and standardized electrolytes during digestion. Similar amounts of bioaccessible Mg were found for all milk samples (35-97 %), while A2 samples evidenced percentages of bioaccessible P exceeding 60 % across the three batches. Despite the health benefits associated to A2 milk, the study did not evidence clear distinction from non-A2 milk in terms of enhanced essential mineral solubility in digestive tract simulation, considering the association of greater digestibility expected for A2 milk.


Amino Acids , Biological Availability , Digestion , Milk , Minerals , Animals , Milk/chemistry , Amino Acids/analysis , Minerals/analysis , Cattle , Magnesium/analysis
7.
Trop Anim Health Prod ; 56(4): 160, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730050

The rearing of calves is an essential activity of a dairy system, as it impacts the future production of these animals. This study aims to evaluate the incidence of diarrhea, performance, and blood parameters of suckling calves that received mineral-vitamin supplementation in milk plus virginiamycin that was offered in milk (via the abomasum) or by esophageal tube (via the rumen). Twenty-seven calves were used, from the first week to 60 days of age, submitted to the following treatments: CONTROL, without supplementation; MILK, supplementation of 20 g of a mineral-vitamin complex with 100 mg of virginiamycin, diluted in milk; RUMEN, supplementation of 20 g of a mineral-vitamin complex diluted in milk and 100 mg of virginiamycin in gelatin capsules via an esophageal applicator. MILK and RUMEN calves had lower fecal consistency scoring, fewer days with scores 2 and 3 throughout the experimental period, and lower spending on medication compared to the CONTROL animals. Supplemented calves had higher fat and protein intake and reached feed intake of 600 g earlier than CONTROL animals, but did not differ in performance and hematological parameters. Supplementation with virginiamycin and vitamin-mineral complex for suckling calves reduced the incidence and days of diarrhea, and reduced medication costs, with no difference in performance, but the supplemented animals had higher initial protein and fat intake and reached targeted feed intake earlier to begin the weaning process.


Animal Feed , Cattle Diseases , Diarrhea , Dietary Supplements , Virginiamycin , Animals , Cattle , Dietary Supplements/analysis , Diarrhea/veterinary , Diarrhea/prevention & control , Diarrhea/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Incidence , Animal Feed/analysis , Virginiamycin/administration & dosage , Virginiamycin/pharmacology , Vitamins/administration & dosage , Animals, Suckling , Male , Female , Minerals/administration & dosage , Minerals/analysis , Milk/chemistry , Diet/veterinary
8.
Trop Anim Health Prod ; 56(4): 159, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730223

Cell components soluble in neutral detergent are a diverse group, both compositionally and nutritionally. The present study aimed to evaluate production responses, behavior (eating, ruminating, and idling), and nitrogen balance of dairy goats fed different ratios of neutral detergent-soluble carbohydrate fractions. Five multiparous Alpine does with mean ± SD initial body mass of 49.5 ± 7.9 kg and 60 days of lactation were randomly assigned in a 5 × 5 Latin square design. The treatments were the ratios of starch (starch associated with soluble sugar [StSS]) to neutral detergent-soluble fiber (NDSF) (StSS:NDSF): 0.89, 1.05, 1.24, 1.73, and 2.92. No effect was observed (P > 0.05) of StSS:NDSF on the intakes of neutral detergent fiber (NDF) and NDSC. However, DM intake showed a quadratic behavior (P = 0.049). The ingestive behavior was affected by StSS:NDSF linearly increased (P = 0.002) the feeding efficiency. The increase in StSS:NDSF caused a linear increase in fecal (P = 0.011), urinary (P < 0.001), and milk nitrogen excretion (P = 0.024). The increase in StSS:NDSF affected (P = 0.048) milk yield and net energy lactation (P = 0.036). In conclusion, dairy goats experience reduced dry matter intake and milk yield when subjected to high-NDSC diets, specifically those above 1.24 StSS:NDSF ratio. Elevated NDSC levels in the diets lead to decreased feeding time, whereas rumination remains unaffected. Nitrogen losses in goats increase linearly with high-NDSC diets, and a significant impact on nitrogen balance.


Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Goats , Lactation , Milk , Nitrogen , Animals , Goats/physiology , Female , Nitrogen/metabolism , Nitrogen/analysis , Diet/veterinary , Milk/chemistry , Animal Feed/analysis , Feeding Behavior/drug effects , Random Allocation , Dietary Fiber/analysis , Dietary Fiber/administration & dosage , Dietary Carbohydrates/analysis , Dietary Carbohydrates/administration & dosage
9.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745199

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
10.
Compr Rev Food Sci Food Saf ; 23(3): e13350, 2024 May.
Article En | MEDLINE | ID: mdl-38725377

Growth factors are commonly added to cell culture media in cellular agriculture to mimic the endogenous process of proliferation and differentiation of cells. Many of these growth factors are endogenous to humans and known to be present in the edible tissues and milk of food animals. However, there is little or no information on the use of growth factors intentionally added in food production before the advent of cultivated meat. Ten commonly used growth factors have been reviewed to include information on their mode of action, bioavailability, occurrence in food and food animals, endogenous levels in humans, as well as exposure and toxicological information drawn from relevant animal studies and human clinical trials with a focus on oral exposure. In addition, a comparison of homology of growth factors was done to compare the sequence homology of growth factors from humans and domestic animal species commonly consumed as food, such as bovine, porcine, and poultry. This information has been gathered as the starting point to determine the safety of use of growth factors in cultivated meat meant for human consumption. The change in levels of growth factors measured in human milk and bovine milk after pasteurization and high-temperature treatment is discussed to give an indication of how commercial food processing can affect the levels of growth factors in food. The concept of substantial equivalence is also discussed together with a conservative exposure estimation. More work on how to integrate in silico assessments into the routine safety assessment of growth factors is needed.


Intercellular Signaling Peptides and Proteins , Meat , Animals , Meat/analysis , Humans , Food Safety , Milk/chemistry , Cattle , In Vitro Meat
11.
PLoS One ; 19(5): e0302788, 2024.
Article En | MEDLINE | ID: mdl-38722837

Research has identified Northwest Turkey as a key region for the development of dairying in the seventh millennium BCE, yet little is known about how this practice began or evolved there. This research studies Barcin Höyük, a site located in Bursa's Yenisehir Valley, which ranges chronologically from 6600 BCE, when the first evidence of settled life appears in the Marmara Region, to 6000 BCE, when Neolithic habitation at the site ceases. Using pottery sherds diagnostic by vessel category and type, this paper aims at identifying which ones may have been primarily used to store, process, or consume dairy products. Organic residue analysis of selected samples helped address the process of adoption and intensification of milk processing in this region over time. The lipid residue data discussed in this paper derive from 143 isotopic results subsampled from 173 organic residues obtained from 805 Neolithic potsherds and suggest that bowls and four-lugged pots may have been preferred containers for processing milk. The discovery of abundant milk residues even among the earliest ceramics indicates that the pioneer farmers arrived in the region already with the knowhow of dairying and milk processing. In fact, these skills and the reliance on secondary products may have given them one of the necessary tools to successfully venture into the unfarmed lands of Northwest Anatolia in the first place.


Archaeology , Dairying , Turkey , Dairying/history , History, Ancient , Humans , Animals , Milk/chemistry
12.
Trop Anim Health Prod ; 56(4): 148, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691230

This study was conducted on 90 grazing Hair, Alpine × Hair F1 (AHF1), and Saanen × Hair F1 (SHF1) crossbred goats in three farms located around the Taurus Mountains in Konya, Türkiye. The study investigated variation in milk production, physico-chemical traits of milk fractions (foremilk, hindmilk and total milk), and growth traits. Genotype, parity, offspring sex, birth type, and flock factors significantly influenced milk production and quality traits of milk fractions (P < 0.05 to P < 0.01). Does with male/single offspring produced less milk, but with higher nutrient density (P < 0.05). Hindmilk was 272%, 31% and 61% richer in fat, total solids and energy content than foremilk, respectively (P < 0.001). However, the protein, lactose and solids-non-fat content of hindmilk was on average 7% lower than that of foremilk (P < 0.001). Physico-chemical quality traits of foremilk, hindmilk and total milk had a strong negative correlation with daily milk yield (P < 0.05 to P < 0.001). Live weight and average daily gains (ADG) of kids were influenced by maternal parity, flock, offspring sex and birth type (P < 0.05). The overall Kleiber ratios (KR) from birth to 2 months, birth to 3 months, birth to 6 months and 3 to 6 months of age were 21.0 ± 0.22, 17.1 ± 0.11, 10.5 ± 0.06 and 8.5 ± 0.21 g/kg of metabolic weight, respectively. It was concluded that these findings are critical for milk sampling protocols, offspring growth strategies, product development and precision livestock management.


Goats , Lactation , Milk , Animals , Goats/physiology , Milk/chemistry , Female , Male , Dairying , Genotype
13.
Sci Rep ; 14(1): 10349, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710789

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Mastitis, Bovine , Mesenchymal Stem Cell Transplantation , Milk , Animals , Cattle , Female , Mastitis, Bovine/therapy , Mastitis, Bovine/microbiology , Milk/cytology , Milk/microbiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Cytokines/metabolism , Cytokines/blood
14.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710998

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Clostridium Infections , Clostridium perfringens , Enteritis , Genetic Variation , Mastitis, Bovine , Milk , Phylogeny , Animals , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/classification , Clostridium perfringens/pathogenicity , Cattle , Egypt , Female , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Milk/microbiology , Enteritis/microbiology , Enteritis/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology , Feces/microbiology , Type C Phospholipases/genetics , Dairying , Farms , Bacterial Toxins/genetics
15.
Sci Rep ; 14(1): 10968, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745072

Dietary supplementation of ruminants with fish oil is a strategy for favorably modifying the fatty acid composition of milk fat. This study investigated the effect of supplementing cows' diet with fish oil after low-temperature crystallisation (LTC-FO) compared to its raw form (FO) on milk yield, milk components (fat, protein, and lactose), and milk fatty acid profile. Twenty-four mid-lactating multiparous Polish Holstein-Friesian cows fed a total-mix ration were randomly assigned to two homogeneous groups (n = 12 cows each) and supplemented with LTC-FO or FO at 1% of dry matter. Milk samples were collected on days 14 and 30 of the 30-day experiment. No significant differences between the groups in terms of milk yield, milk protein, and lactose content were found, however, the fat yield and content decreased in the LTC-FO group. Milk fat from cows in the LTC-FO group contained significantly higher levels of C18:1 trans-11, C18:2 cis-9, trans-11, C18:3n - 3, C20:5, and C22:6, and lower levels of saturated fatty acids compared to the FO group (p < 0.05). Therefore, LTC-FO may be a more efficient feed additive than FO and may serve as a practical way to modify the fatty acid composition of milk fat.


Dietary Supplements , Fatty Acids, Omega-3 , Fatty Acids , Fish Oils , Lactation , Milk , Animals , Cattle , Milk/chemistry , Milk/metabolism , Fish Oils/administration & dosage , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Female , Fatty Acids/analysis , Fatty Acids/metabolism , Animal Feed/analysis , Diet/veterinary
16.
BMC Genomics ; 25(1): 477, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745140

BACKGROUND: Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS: To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS: The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.


Genomics , Goats , Linkage Disequilibrium , Milk , Tropical Climate , Animals , Goats/genetics , Milk/metabolism , Genomics/methods , Adaptation, Physiological/genetics , Selection, Genetic , Polymorphism, Single Nucleotide , Pakistan , Phenotype , Breeding
17.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Article En | MEDLINE | ID: mdl-38695399

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Buttermilk , Cheese , Goats , Lipidomics , Whey , Animals , Buttermilk/analysis , Cheese/analysis , Whey/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Glycolipids/chemistry , Milk/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Lipids/chemistry , Lipids/analysis
18.
J Agric Food Chem ; 72(19): 11072-11079, 2024 May 15.
Article En | MEDLINE | ID: mdl-38699886

Gouda-type cheeses were produced on a pilot-scale from raw milk (RM-G) and pasteurized milk (PM-G). Sixteen key aroma compounds previously characterized by the sensomics approach were quantitated in the unripened cheeses and at five different ripening stages (4, 7, 11, 19, and 30 weeks) by means of stable isotope dilution assays. Different trends were observed in the formation of the key aroma compounds. Short-chain free fatty acids and ethyl butanoate as well as ethyl hexanoate continuously increased during ripening but to a greater extent in RM-G. Branched-chain fatty acids such as 3-methylbutanoic acid were also continuously formed and reached a 60-fold concentration after 30 weeks, in particular in PM-G. 3-Methylbutanal and butane-2,3-dione reached a maximum concentration after 7 weeks and decreased with longer ripening. Lactones were high in the unripened cheeses and increased only slightly during ripening. Recent results have shown that free amino acids were released during ripening. The aroma compounds 3-methylbutanal, 3-methyl-1-butanol, and 3-methylbutanoic acid are suggested to be formed by microbial enzymes degrading the amino acid l-leucine following the Ehrlich pathway. To gain insight into the quantitative formation of each of the three aroma compounds, the conversion of the labeled precursors (13C6)-l-leucine and (2H3)-2-keto-4-methylpentanoic acid into the isotopically labeled aroma compounds was studied. By applying the CAMOLA approach (defined mixture of labeled and unlabeled precursor), l-leucine was confirmed as the only precursor of the three aroma compounds in the cheese with the preferential formation of 3-methylbutanoic acid.


Cheese , Milk , Odorants , Pasteurization , Volatile Organic Compounds , Cheese/analysis , Animals , Milk/chemistry , Milk/metabolism , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Cattle
19.
J Agric Food Chem ; 72(19): 11062-11071, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700435

Gouda cheese was produced from pasteurized milk and ripened for 30 weeks (PM-G). By application of gas chromatography/olfactometry and an aroma extract dilution analysis on the volatiles isolated by extraction/SAFE distillation, 25 odor-active compounds in the flavor dilution (FD) factor range from 16 to 4096 were identified. Butanoic acid, 2- and 3-methylbutanoic acid, and acetic acid showed the highest FD factors, and 2-phenylethanol, δ-decalactone, and δ-dodecalactone were most odor-active in the neutral-basic fraction. Quantitations by stable isotope dilution assays followed by a calculation of odor activity values (OAVs) revealed acetic acid, 3-methylbutanoic acid, butanoic acid, and butane-2,3-dione with the highest OAVs. Finally, an aroma recombinate prepared based on the quantitative data well agreed with the aroma profile of the PM-G. In Gouda cheese produced from raw (nonpasteurized) milk (RM-G), qualitatively the same set of odor-active compounds was identified. However, higher OAVs of butanoic acid, hexanoic acid, and their corresponding ethyl esters were found. On the other hand, in the PM-G, higher OAVs for 3-methylbutanoic acid, 3-methylbutanol, 3-methylbutanal, and butane-2,3-dione were determined. The different rankings of these key aroma compounds clearly reflect the aroma differences of the two Gouda-type cheeses. A higher activity of lipase in the RM-G and higher amounts of free l-leucine in PM-G on the other side were responsible for the differences in the concentrations of some key aroma compounds.


Cheese , Milk , Odorants , Olfactometry , Pasteurization , Volatile Organic Compounds , Cheese/analysis , Milk/chemistry , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Animals , Flavoring Agents/chemistry , Cattle , Gas Chromatography-Mass Spectrometry , Humans , Taste
20.
Vet Q ; 44(1): 1-9, 2024 Dec.
Article En | MEDLINE | ID: mdl-38733121

The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.


Animals, Newborn , Feces , Gastrointestinal Microbiome , Lactation , Milk , RNA, Ribosomal, 16S , Animals , Gastrointestinal Microbiome/physiology , Horses , Female , Milk/chemistry , Milk/microbiology , Feces/microbiology , Feces/chemistry , Animals, Newborn/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis
...